Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres

Sujet Principal
Année
Type de document
Gamme d'année
1.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-580195.v1

Résumé

One of the most remarkable features of the SARS-CoV-2 Variants of Concern (VOC) is the unusually large number of mutations they carry. However, the specific factors that drove the emergence of such variants since the second half of 2020 are not fully resolved. In this study, we described a new SARS-CoV-2 lineage provisionally designated as P.1-like-II that, as well as the previously described lineage P.1-like-I, shares several lineage-defining mutations with the VOC P.1 circulating in Brazil. Reconstructions of P.1 ancestor sequences demonstrate that the entire constellation of mutations that define the VOC P.1 did not accumulate within a single long-term infected individual, but was acquired by sequential addition during interhost transmissions. Our evolutionary analyses further estimate that P.1-ancestors strains carrying half of the P.1-lineage-defining mutations, including those at the receptor-binding domain of the Spike protein, circulated cryptically in the Amazonas state since August 2020. This evolutionary pattern is consistent with the hypothesis that partial human population immunity acquired from natural SARS-CoV-2 infections during the first half of 2020 might have been the major driving force behind natural selection that allowed VOCs' emergence and worldwide spread. These findings also support a long lag-time between the emergence of variants with key mutations of concern and expansion of the VOC P.1 in Brazil.


Sujets)
COVID-19
2.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.03.19.21253946

Résumé

Mutations at both the receptor-binding domain (RBD) and the amino (N)-terminal domain (NTD) of the SARS-CoV-2 Spike (S) glycoprotein can alter its antigenicity and promote immune escape. We identified that SARS-CoV-2 lineages circulating in Brazil with mutations of concern in the RBD independently acquired convergent deletions and insertions in the NTD of the S protein, which altered the NTD antigenic-supersite and other predicted epitopes at this region. These findings support that the ongoing widespread transmission of SARS-CoV-2 in Brazil is generating new viral lineages that might be more resistant to neutralization than parental variants of concern.

SÉLECTION CITATIONS
Détails de la recherche